Terminale > Mathématiques > Annales > Annale - Probabilités, suites

ANNALE - PROBABILITÉS, SUITES

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Comment montrer qu'une suite est géométrique ?

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Comment montrer qu'une suite est géométrique ?

 

Afin de montrer qu'une suite $(u_n)$ est géométrique, on commence par calculer les premiers termes en s'assurant qu'ils ne sont pas nuls puis on calcule les rapports des premiers termes : $\dfrac{u_1}{u_0}$ et $\dfrac{u_2}{u_1}$. 

 

Considérons par exemple la suite $u_n = 4 \times 3^n$. On a alors $\dfrac{u_1}{u_0} = 3$ et $\dfrac{u_2}{u_1} = 3$.

Si il apparait que le rapport des premiers termes est une constante $q$: on émet alors une conjecture en supposant que la constante ainsi trouvée est la raison de la suite

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.