Terminale > Mathématiques > Suites > Suites tendant vers l'infini

SUITES TENDANT VERS L'INFINI

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Suites tendant vers l'infini

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Suites tendant vers l'infini

 

Définition :


Une suite de réels $(u_n)_{n \in \mathbb{N}}$ a pour limite $+ \infty$ lorsque $n$ tend vers $+ \infty$ si et seulement si tout intervalle de la forme $[A; +\infty [$, avec $A \in \mathbb{R}^*_+$, contient tous les termes à partir d'un certain rang.

On note alors : $\lim \limits _{n \to + \infty} u_n = + \infty$

Capture_d’écran_2020-05-10_à_11.12.46

On trace la droite des réels et la "droite" des entiers naturels. On place sur la droite des réels un réel $

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.